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Abstract— The ability to manipulate objects in desired
configurations is a fundamental requirement for robots to
complete various practical applications. While certain goals
can be achieved by picking and placing the objects of interest
directly, object reorientation is needed for precise placement
in most of the tasks. In such scenarios, the object must
be reoriented and re-positioned into intermediate poses that
facilitate accurate placement at the target pose. To this end,
we propose a reorientation planning method, ReorientDiff,
that utilizes a diffusion model-based approach. The proposed
method employs both visual inputs from the scene, and goal-
specific language prompts to plan intermediate reorientation
poses. Specifically, the scene and language-task information are
mapped into a joint scene-task representation feature space,
which is subsequently leveraged to condition the diffusion
model. The diffusion model samples intermediate poses based
on the representation using classifier-free guidance and then
uses gradients of learned feasibility-score models for implicit
iterative pose-refinement. The proposed method is evaluated
using a set of YCB-objects and a suction gripper, demonstrating
a success rate of 95.2% in simulation. Overall, we present
a promising approach to address the reorientation challenge
in manipulation by learning a conditional distribution, which
is an effective way to move towards generalizable object
manipulation. More results can be found on our website: https:
//utkarshmishra04.github.io/ReorientDiff.

I. INTRODUCTION

Rearranging objects into specific poses is a fundamental
task. It’s not only essential for everyday activities at home but
also plays a critical role in industrial applications like packing
and assembly lines. Performing such a task requires extracting
object information from visual-sensor data and planning a
pick-place sequence [2], [3]. While a single-step pick-place
sequence is a viable solution, placing the object at a specific
position and orientation is not always feasible. Reorientation
is an effective strategy when successfully changing an object’s
pose allows its placement at the target pose [1]. Such a
strategy ensures feasible intermediate transition poses in
scenarios without common grasps between the current pose
and an object’s desired placement pose.

The problem of finding reorientation poses is tradition-
ally approached via rejection sampling based on finding
successful grasps between the current pose-intermediate pose
and intermediate pose-target pose. While previous classical
approaches achieve this by using trajectory planners [4] to
plan motion from the current pose to the desired pose via
diverse candidate intermediate poses, such an exhaustive
search is expensive on time and is limited by choice of the
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number of intermediate pose options. Recently, there have
been efforts to improve the reorientation process via a data-
driven rejection sampling solution using learned models [1]
that predict the feasibility score of an intermediate pose
w.r.t. feasible grasps in the current and target pose. While
their method improves the success rate and planning time,
the algorithm requires processing significantly large number
of candidate random samples and specifying the target
object’s placement pose. The former limits scalability, and the
latter challenges generalizability. Lately, with the advances
in language descriptor foundation models like CLIP [5],
which projects images and texts to a common feature space,
target object specifications can be directly correlated between
visual information and suitable language commands, thus
empowering human-robot interaction. This motivated us to
explore grounding the problem statement of reorientation on
language and hence embed semantic knowledge of the task
with the spatial structure of the scene [6].

In this paper, we introduce ReorientDiff, a diffusion model
based generative method to restructure the reorientation pose
generation pipeline as a conditional distribution learning
problem. Such a method enables us to directly sample feasible
reorientation poses without rejection sampling, thus improving
scalability. Our contributions can be summarized as follows:

Learning a distribution of intermediate poses: For a
given pile of objects, a target object, and its target placement
location, we formulate a conditional distribution of feasible
intermediate poses. As compared to rejection sampling using
random prior, our approach aims at providing a learned
prior to efficiently sample high-quality reorientation poses.
Leveraging the multi-modality of diffusion models, this
distribution encompasses all poses reachable from both the
current pose and the target pose.

Flexibly sampling based on possible grasp poses: It is
necessary to make sure that the grasp poses w.r.t. object is
constant during one pick-place transition. To achieve this,
we flexibly sample intermediate poses from the learned
distribution based on feasible grasp poses using classifier
guidance via pre-trained success classifiers [7], [1]. Such
models implicitly refine sampled pose and operate individually
for both transitions during reorientation. Hence, the learned
distribution can be used for any possible grasp pose based
on kino-dynamic feasibility directly at inference.

Representing target placement location via natural
language: We leverage CLIP [5] to generate information
embeddings from visual input and task descriptions in natural
language. We further use these embeddings as conditions
for learning the conditional distribution. While this has been
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Fig. 1: Reorientation for precise target placement The above figure represents the phenomenon of reorientation in which an object from a cluttered
file has to be placed precisely in a shelf (target position shown). As the object cannot be directly placed at the target location, our proposed method,
ReorientDiff, samples a reorientation pose using a learned conditional distribution by a diffusion model. Such a proposed reorientation pose acts as a
transition for facilitating successful placement. We also consider and take advantage of the object dynamics, as introduced by Wada et al. [1], by which we
ensure that un-grasping an object in an unstable pose will eventually allow the object to settle at some favourable pose.

explored in recent literature [6], we see this as a substantial
improvement over the baseline.

In the proposed approach, we combine a generic classifier-
free conditional sampling [8] with classifier-guided sam-
pling [9] to sample from diffusion models. To validate
the performance of ReorientDiff, we consider reorientation
of objects in the YCB dataset [10] that are feasible for
suction grippers. For each selected object, we choose suitable
locations on multiple shelf levels and target orientations.

II. RELATED WORK

Object manipulation and reorientation. Finding the grasp
pose that is feasible for both the current and target location is
a widely employed strategy for pick-and-place operations [11],
[12], [13]. Such problems are usually solved in two steps:
deciding an appropriate placement pose (within a region
of interest) and searching for common grasps. In order to
ensure feasible target placement, prior works have mostly
relied on known object geometries [11], [12], vision-based
object representation [2], [14] or using segmentation and
depth maps of the pre-specified target object [15], [16], [1].
These strategies have led to several object rearrangement
methods [6], [17], [3]. Unlike most prior works that consider
the availability of common grasps by default, for complex
manipulation scenarios where there are no common grasps,
reorientation becomes mandatory. The object needs to be
reoriented to an intermediate pose and regrasped to place it
at the target location. Such a scenario has been traditionally
tackled via rejection sampling strategies and recently im-
proved via regression-based methods. We also aim to develop
a learning-based method.

Learning for object manipulation. While prior works
have pre-dominantly incorporated trajectory planners [4],
they have employed learning strategies to decide the target
object and its placement pose as discussed in the previous
subsection. Additionally, task descriptions as natural language
have been very effective for generalized pick-place tasks in

planar tabletop [6] and 3D [17] manipulation. Such language
descriptions can be embedded into the learning pipeline via
foundation models like CLIP [5], which encodes visual and
language information into a common representation space.
This has been further extended towards language-conditioned
object rearrangement planning [18], [19] and supplying high-
level instructions for long-horizon planning [20].

Recently, reorientation problems have been solved by
planning to reorient objects using extrinsic supports [21],
[22], which enables them to re-grasp the object in a desired
way. The above methods are regression-based and limited to
modeling only one solution pose. Such approaches cannot
cater to the multiple possible solutions of the same problem.
In such a case, rejection sampling is still beneficial and can
be performed using learned feasibility prediction models [1].
We want to develop a pipeline that can still learn about all
feasible poses without analyzing extensive random samples.

Generative models for object manipulation. For pick-and-
place and reorientation tasks, there can be multiple feasible
grasps and reorientation poses respectively. Hence, generative
models offer an option to learn them as conditional distribu-
tions. Prior works have explored VAE for planning grasps [7]
using visible point-cloud of objects. In this direction, diffusion
models have been shown to be advantageous for robotics [23],
[24], [25], [26], [27]. Recent works have demonstrated the
multi-modal distribution learning using diffusion models for
finding target poses [18], [28] and learning policies [23], [24],
[25]. In addition to such properties, we also plan to leverage
the flexible sampling and conditioning strategies offered
by diffusion models to incorporate additional conditions at
inference without re-training.

III. PRELIMINARY: DIFFUSION MODELS

Consider samples x0 from an unknown data distribution
q(x0); diffusion models [29] learn to estimate the distribution
by a parameterized model pθ(x0) using the given samples.
The procedure is completed in two steps: the forward and the



Forward Process

Implicit Pose Refinement with
Feasibility Score Models using

grasps andClassifier-free Guidance
with 

Reverse Process

Classifier-free Guidance + Feasibility Score Gradients

Reorient the cracker
box to face right and

place it on the top shelf

Scene
Description

Task
Description

Po
se

 E
m

b.

Po
se

 D
ec

.

CLIP Text
Embedding

CLIP ResNet
Embedding

ResNet
Embedding

Target Obj.
Pred

Target Obj.
Segmentation

Target Place
Pose Pred

Joint Embedding for Visual-
Language Input

RGB (H x W x 3)

RGB-D (H x W x 4)

Pretrained Frozen layers Trainable layers Self-Attention ConcatenationCross-Attention Condition Embedding

x D

(a)  Forward and Reverse-diffusion process for sampling the intermediate reorientation poses using ReorientDiff

(b) Classifier-free diffusion score function model for

Grasp
Extractor

Grasp
Extractor

Fig. 2: Method Overview (a) Forward and reverse diffusion process. ReorientDiff uses a combination of classifier-free guidance with classifier-based
implicit refinement to sample from the learned distribution of intermediate poses. It ensures high-success feasibility with minimal variance by guiding the
scene-task conditioned sampling using feasibility score gradients. (b) Conditioned score function. ReorientDiff learns the target distribution of feasible
reorientation poses conditioned on the scene (pile of objects) and task (language prompt) jointly represented as Φ. We use the pre-trained frozen CLIP text
and image embeddings to formulate a joint embedding, trained end-to-end to encode information about placement pose, target object and current pose.
Further, the current pose and target poses are processed to obtain feasible grasps (η1 and η2), which are used to calculate the feasibility gradients gk in (a).
The joint embedding is used as a sequence to condition the transformer-based score network ϵθ(qk, k,Φ) via cross-attention to obtain the classifier-free
score estimate in (a).

reverse diffusion processes. The former continuously injects
Gaussian noise in x0 to create a Markov chain with latents
x1:K following transitions:

q(x1:K |x0) =

K∏
k=1

q(xk|xk−1), (1)

where q(xk|xk−1) = N (xk;
√
1− βkxk−1, βkI)

is the per-step noise injection following variance
schedule β1, . . . , βK . This leads to the distribution
q(xk|x0) = N (xk;

√
ᾱkx0, (1 − ᾱk) I) following

notations introduced in [30] as αk = 1 − βk and
ᾱk =

∏k
i=1 αi. Note that ᾱK ≈ 0 and thus xK ∼ N (0, I).

The reverse diffusion learns to denoise the data starting from
xK and following pθ(xk−1|xk) = N (xk−1;µθ(xk, k), βkI)
where

µθ(xk, k) =
1
√
αk

(
xk −

βk√
1− ᾱk

ϵθ(xk, k)
)
. (2)

The parameterized model ϵθ(xk, k) is called the score-
function, and it is trained to predict the perturbations and the

noising schedule by the score-matching objective [31]

argmin
θ

Ex0∼q,ϵ∼N (0,I)

[
∥ϵ− ϵθ(

√
ᾱkx0 +

√
1− ᾱkϵ, k)∥2

]
(3)

In particular, such a score function represents the gradients
of the learned probability distribution as

∇xk
log pθ(xk) = −

1√
1− ᾱk

ϵθ(xk, k). (4)

IV. REORIENTATION

Reorientation consists of solving two problems simulta-
neously, finding a pose that is reachable from the current
pose and, after the effect of gravity, results in a pose that
makes placement at the target pose achievable (as shown
in Figure 1). Once we have an estimate of the current and
target pose, it is intuitive that there will be a set of poses
that will satisfy reorientability. However, only a small subset
of such reorientable poses will be valid with provided kino-
dynamic constraints on grasp poses. Identifying a candidate
sample from this subset by either brute force sampling or



optimization is computationally expensive and has to be done
for every new scenario.

To circumvent the above challenges, we propose a gen-
erative modeling approach to sample from the subset of
valid reorientation poses. More specifically, our method
learns the distribution of all reorientable poses using a
conditional diffusion model and use classifiers to guide
sampling towards valid poses directly during inference based
on provided grasp poses. Hence, we divide the problem into
three segments: i) regression-based end-to-end learning for
finding the target object and placement pose from the scene
and task description (scenario), ii) learning the distribution
of all reorientable poses for a given scenario once the object
specifications are known and iii) learning grasp feasibility
classifiers for selecting only the valid reorientation poses.
To achieve this, we discuss our formulation for constructing
scene-task representation, calculating grasp poses from object
poses and learning grasp feasibility classifiers below. The
diffusion model training and inference is discussed in the
next section.

A. Constructing Generic Scene-Task Representations

A scene-task representation is a compact embedding of all
available information present in the scene and specified by
the user. We define a scene as the location and occupancy of
the place from where a target object should be picked and a
task as the language prompt containing the descriptions for
selecting the target object and deciding placement poses. A
top-down RGB-D camera provides an image I ∈ RH×W×3

and a heightmap H ∈ RH×W×1 as the description of the
pile. For learning the semantic and spatial embeddings [6],
[17], we use pre-trained CLIP foundation model and obtain
semantic embeddings from the image I and language L.
We sequence the embeddings with the spatial embeddings
for target object segmentation to get a joint embedding
sequence Φ as generic scene-task representation as shown
in Figure 2(b). The embedding is further used to predict the
target object and the final placement pose.

B. Sampling Grasp Poses

We generate grasp poses by following the classical ap-
proach of converting the heightmap into a point cloud repre-
sentation and eventually to a point-normal representation [1].
The predicted target object segmentation of the scene is
then used to obtain the surface normals of the target object.
After performing an edge masking using the Laplacian of the
surface normals, the remaining point-normals on the surface
are feasible grasp poses. While we sample grasp poses η1
for picking the object from the pile in the aforementioned
manner, we assume that we have the mesh of the selected
object for sampling grasp poses η2 for placing the object at
the predicted pose.

C. Feasibility Score Models

Following prior works [7], [1], [19], a feasibility prediction
model is important for early-evaluation and rejection of
unfavorable samples. Such a feasibility model predicts the

probability of success of a given grasp pose in successfully
grasping an object in some candidate pose for a specified
scene representation. The phenomenon of grasp success
evaluation in dynamic reorientation pose, as addressed by [1],
is particularly interesting for our setup. Modelling dynamics
for every object is indeed non-trivial and adds to the
complexity; hence the feasibility model implicitly takes care
of the dynamics of the object after deactivating the grasp.
For checking feasibility or the probability of success (y) of
sampled grasps for candidate reorientation poses q, we train
two models:

• For predicting success of reorientation from the cur-
rent pose in a pile to a candidate pose given pick
grasp poses (η1) and scene representation, denoted
as M1(y|η1,q,Φ)

• For predicting success of post-grasp deactivation pose
from the candidate pose and placement grasp poses (η2),
denoted as M2(y|η2,q,Φ)

V. REORIENTDIFF: DIFFUSION FOR REORIENTATION

We aim to generate intermediate reorientation poses for
the target object, which enables successive placement at the
desired pose and is reachable from the current pose. We
introduce a diffusion model-based approach to sample the
most probable successful reorientation poses (q) conditioned
on the scene representation priors (Φ), denoted as p(q|Φ),
which already contains the spatial and semantic information
about the scene and the task. The denoising process can
be further flexibly conditioned by sampling from modified
distributions of the form

ph(q) ∝ p(q|Φ)h(q,Φ), (5)

where h(q,Φ) can represent several grasp success probability
heuristics. By separating the grasp success from reorientation
candidate sampling, the diffusion model trained for reorienta-
tion poses can be reused for varied selection of picking (η1)
and placement grasp poses (η2).

A. Classifier-free Conditional Pose Generation

Following the distribution defined in (5), we use classifier-
free guidance [8] to sample high-likelihood reorientation
poses for a particular scene-task representation. We train
a score-network [31], ϵθ(qk,Φ) ∝ ∇qk

log p(qk|Φ) , to
denoise from qK ∼ N (0, I) to possible reorientation
poses q0 from a K-step reverse diffusion denoising process.
For each step, we calculate ϵ̃k as

ϵ̃k = ϵθ(qk,Φ) + wc

(
ϵθ(qk,Φ)− ϵθ(qk, ø)

)
(6)

The scalar wc implicitly guides the reverse-diffusion towards
poses that best satisfy the scene-task representations. Further,
we calculate the successive samples for the next (k−1)th step
using the DDIM [30] sampling strategy and ϵ̃k as follows:

q̃k−1 ←−
√
ᾱk−1

(qk −
√
1− ᾱk ϵ̃k√
ᾱk

)
+
√

1− ᾱk−1 ϵ̃k

(7)

where, ᾱk is as described in section III.



B. Feasibility Guided Pose Refinement

We use the two feasibility-score prediction models (M1

andM2), which are pre-trained for predicting grasp feasibility
for picking grasp, reorientation pose pairs and placement
grasp, reorientation pose pairs, respectively. In such a case,
the scores can be converted into probability distributions for
each heuristic, defined as, for each i = 1, 2,

hi ≡ p(y = 1|ηi,q,Φ)|Mi
= exp

(
−(1−Mi(y|ηi,q,Φ))2

)
Following classifier-based guidance [9] formulation for the

heuristics, the reverse diffusion can be formulated as:

ph(qk|qk+1, y,Φ) ∝
p(qk|qk+1,Φ) p(y|η1, q̂k

0 ,Φ)|M1
p(y|η2, q̂k

0 ,Φ)|M2
(8)

where, q̂k
0 is the sample proposed at diffusion step k and

defined as:

q̂k
0 =

qk −
√
1− ᾱk ϵ̃k√
ᾱk

(9)

Considering Taylor first order approximations for heuristics
and standard reverse process Gaussian (µθ(qk, k,Φ), βkI) as
described in section III, we get the new mean (µθ,h(qk, k,Φ))
for the distribution ph(qk|qk+1, y,Φ) in (8) as:

µθ,h(qk, k,Φ)

= µθ(qk, k,Φ) + βk

2∑
i=1

wi∇qk
log p(y|ηi,qk,Φ)|Mi

= µθ(qk, k,Φ)− βk

2∑
i=1

wi∇qk

[
1−Mi(y|ηi, q̂k

0 ,Φ)
]2
.

In view of (2), we then obtain the modified score

ϵk ←− ϵ̃k −
√
1− ᾱk gk

where gk = −βk

∑2
i=1 wi∇qk

[
1 −Mi(y|ηi, q̂k

0 ,Φ)
]2

. We
notice that injecting noise to gk, as in stochastic DDIM,
can slightly improve the performance. We calculate the final
qk−1 using the refined ϵk in (7). A visual clarification of the
forward and reverse diffusion is shown in Figure 2(a).

VI. RESULTS: SIMULATION

Based on the environment setup as discussed in section IV,
we create datasets, train diffusion and feasibility score models
and evaluate them in simulation.

A. Dataset Generation and Training

We use PyBullet [32] and an OMPL [33] based motion
planner to solve for collision-free path between current pose
and a candidate reorientation pose and from the reorientation
pose to the ground-truth placement pose for diverse set of
YCB-objects and target locations. We sampled approximately
40000 candidate poses following Wada et al. [1]. The goal
properties were converted into modular language instructions,
and the success of pick and place for both the steps was
recorded. The scene and task properties were used to construct
the joint visual-language embedding space, which was further
used to train the feasibility score models using binary success
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Fig. 3: Visual Analysis of Scene-Task Network Performance The scene-
task network maps the visual (row 2) image of the pile (row 1) and
language (bottom row) inputs to a feature space which is used to predict
the placement location (row 4) and target object segmentation (row 3).

labels. Eventually, we train a conditional diffusion model
using only the successful reorientation poses. Such a diffusion
model is reusable for diverse set of grasp poses when
combined with the feasibility score models.

B. Performance Evaluation: Scene-Task Representation

To evaluate the quality of the scene-task embedding
network, we analyze the accuracy of the object selection and
placement pose prediction along with the error in the predicted
segmentation. We show a visual analysis in Figure 3 where
the output segmentation and the predicted placement pose in
the shelf are shown for three scenes and tasks. For accurate
shelf-level estimation, we round each object’s predicted height
to the nearest shelf-level height, and a similar post-processing
is conducted for the object orientation. In our experiments,
the object selection network was 100% accurate, and the
number of pixels wrongly classified was about 1% of the
complete image on average over 100 random samples. The
average error in predicting the height of the target placement
after post-processing is around 8 mm, and the mean error in
the yaw angle of the predicted pose is 0.3 rad.

C. Performance Evaluation: Diffusion with Guidance

The trained classifier-free conditional diffusion model
and the score feasibility models are used to perform the
reverse diffusion using the classifier-free guidance with and
without feasibility score guidance. Experiments comparing the
performance of both the methods are shown in Figure 4 for
a set of YCB Objects [10] and different scene-task scenarios
where only 40 candidate poses are sampled and top 10 high-
likelihood poses are selected. The comparison shows that
while the classifier-free guidance is good enough to sample
high-likelihood reorientation poses, the primary purpose of the



Fig. 4: Reverse Diffusion for Reorientation Pose Generation The reverse sampling process for 4 k-steps at k = 20, 12, 4, 0 for K = 20 in four different
scene-task scenarios comprising of the Cracker Box, Mustard Bottle and Sugar Box in different target orientations are shown above. The scenes are shown
in the left-side of every sub-figure and consists of the pile with the target object and the predicted placement location on the shelf. The language prompt
defining each of the tasks is mentioned below each sub-figure. It consists of either the absolute (the object’s name) or the relative (heaviest/lightest) reference
to the object and details about the target placement.

feasibility score gradients is to reduce the variance in the pose
generation and ensure high success probability. A numerical
analysis of the overall success is shown and compared with
the rejection sampling based baseline [1] in Table I.

TABLE I: Success evaluation of the proposed method as compared to the
rejection sampling based baseline ReorientBot. The ReorientDiff algorithm
was tested for more than 100 different scene task settings consisting of
equal distribution of the selected objects and all the orientations. A task is
considered a success if it is completed at-least once in 3 random seeds.

Method Success (%)
Reorient

Success (%)
Place

Success (%)
Overall

Random 43.4 40.8 40
ReorientBot 97.9 95.1 93.2
ReorientDiff
(w/o Guide) 97.4 92.3 90.8

ReorientDiff 98.9 96.5 95.2

The reorientation success percentage holds different rele-
vance as compared to the baseline. The baseline does two
step reverse rejection sampling where reorientation search is
conducted over candidates which are feasible for placement,
so there might be a scenario where there is no solution. For
the case of ReorientDiff, the reorientation success measures
the capability of the diffusion model to generalize to poses
which ensure reorientability and scope for future placement.
Higher reorientation success and lower placement success is
an indication that the model is short-sighted and is giving
importance to a single step success metric. From Table I,
we ensure high reorientability success along with better
placement success. The overall success is based on the
accurate placement of the object from the reoriented pose,
and it represents the successful completion of a task. The
metric is measured by calculating the difference between the
desired and the pose after final placement.

D. Performance Evaluation: K-Step Reverse Diffusion

Sampling from a trained diffusion models is flexible
and can be achieved using different levels of discretization

TABLE II: Success evaluation with different levels of discretization while
sampling using ReorientDiff.

ReorientDiff K Success (%)
Reorient

Success (%)
Place

Success (%)
Overall

K = 10 97.4 94.5 93.9
K = 20 98.9 96.5 95.2

between xK ∼ N (0, I) to meaningful reorientation poses.
We perform the complete analysis for multiple values of the
number of reverse denoising steps K as shown in Table II.
ReorientDiff performs well with only 20 sampling steps.

Following our analysis on performance, we explored the
time consumption for the overall planning of a successful
reorientation pose from a given scene and corresponding task
information. We provide the recorded timings for all of our
ablations and the baseline in Table III.

TABLE III: Computational analysis of the planning time for ReorientD-
iff (K = 20) with and without feasibility score guidance along with the
baseline.

Method Planning
Time (sec)

ReorientBot 2.5
ReorientDiff (w/o Guide) 0.3

ReorientDiff 1.05

Our findings show that ReorientDiff leverages fast sampling
strategies of FastDPM [34] to recover from computationally
heavy gradient calculations for reverse denoising steps.
Without using the guidance from the feasibility-score models,
classifier-free guidance requires even less time as compared to
the baseline, ReorientBot, as shown in Table III. Hence, from
our visual and empirical analysis, ReorientDiff successfully
proves that formulating the problem of reorientation as
learning a conditional distribution is an efficient and scalable
way to move towards more generalizable object manipulation.



VII. CONCLUSION

Diffusion models are powerful generative models capable
of modeling (conditional) distributions. Our proposed method
ReorientDiff exploits the capabilities of such models to predict
reorientation poses conditioned on a compact scene-task
representation embedding containing information about the
target object and its placement location. Further, the samples
are refined using learned feasibility-score models to reduce
uncertainty and ensure the success of the planned intermediate
poses. With only 10 candidate reorientation poses, we
achieved an overall success rate of 95.2% across various
objects. With the possible inclusion of point-cloud-based
object representations [28], such a method can generalize to
a more diverse set of objects.

REFERENCES

[1] K. Wada, S. James, and A. J. Davison, “Reorientbot: Learning object
reorientation for specific-posed placement,” in 2022 International
Conference on Robotics and Automation (ICRA), pp. 8252–8258, IEEE,
2022.

[2] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian,
T. Armstrong, I. Krasin, D. Duong, V. Sindhwani, et al., “Transporter
networks: Rearranging the visual world for robotic manipulation,” in
Conference on Robot Learning, pp. 726–747, PMLR, 2021.

[3] B. Tang and G. S. Sukhatme, “Selective object rearrangement in clutter,”
in 6th Annual Conference on Robot Learning, 2022.

[4] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Proceedings 2000 ICRA. Millen-
nium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2,
pp. 995–1001, IEEE, 2000.

[5] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning, pp. 8748–8763, PMLR, 2021.

[6] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” in Conference on Robot Learning,
pp. 894–906, PMLR, 2022.

[7] A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational
grasp generation for object manipulation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 2901–
2910, 2019.

[8] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” arXiv
preprint arXiv:2207.12598, 2022.

[9] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” Advances in Neural Information Processing Systems, vol. 34,
pp. 8780–8794, 2021.

[10] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in 2015 international conference on
advanced robotics (ICAR), pp. 510–517, IEEE, 2015.

[11] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” arXiv preprint
arXiv:1703.09312, 2017.

[12] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-
net 3.0: Computing robust vacuum suction grasp targets in point
clouds using a new analytic model and deep learning,” in 2018 IEEE
International Conference on robotics and automation (ICRA), pp. 5620–
5627, IEEE, 2018.

[13] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley,
and K. Goldberg, “Learning ambidextrous robot grasping policies,”
Science Robotics, vol. 4, no. 26, p. eaau4984, 2019.

[14] D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani,
K. Goldberg, and A. Zeng, “Learning to rearrange deformable cables,
fabrics, and bags with goal-conditioned transporter networks,” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
pp. 4568–4575, IEEE, 2021.

[15] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in 2016 IEEE international
conference on robotics and automation (ICRA), pp. 3406–3413, IEEE,
2016.

[16] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma,
O. Taylor, M. Liu, E. Romo, et al., “Robotic pick-and-place of novel
objects in clutter with multi-affordance grasping and cross-domain
image matching,” The International Journal of Robotics Research,
vol. 41, no. 7, pp. 690–705, 2022.

[17] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-task
transformer for robotic manipulation,” arXiv preprint arXiv:2209.05451,
2022.

[18] W. Liu, T. Hermans, S. Chernova, and C. Paxton, “Structdiffusion:
Object-centric diffusion for semantic rearrangement of novel objects,”
arXiv preprint arXiv:2211.04604, 2022.

[19] W. Liu, C. Paxton, T. Hermans, and D. Fox, “Structformer: Learning
spatial structure for language-guided semantic rearrangement of novel
objects,” in 2022 International Conference on Robotics and Automation
(ICRA), pp. 6322–6329, IEEE, 2022.

[20] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, K. Gopalakrishnan, K. Hausman, A. Herzog, et al., “Do as i
can, not as i say: Grounding language in robotic affordances,” arXiv
preprint arXiv:2204.01691, 2022.

[21] S. Cheng, K. Mo, and L. Shao, “Learning to regrasp by learning to
place,” in 5th Annual Conference on Robot Learning, 2021.

[22] P. Xu, Z. Chen, J. Wang, and M. Q.-H. Meng, “Planar manipulation
via learning regrasping,” arXiv preprint arXiv:2210.05349, 2022.

[23] M. Janner, Y. Du, J. Tenenbaum, and S. Levine, “Planning with
diffusion for flexible behavior synthesis,” in International Conference
on Machine Learning, 2022.

[24] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal,
“Is conditional generative modeling all you need for decision-making?,”
arXiv preprint arXiv:2211.15657, 2022.

[25] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,”
arXiv preprint arXiv:2303.04137, 2023.

[26] U. A. Mishra, S. Xue, Y. Chen, and D. Xu, “Generative skill chaining:
Long-horizon skill planning with diffusion models,” in 7th Annual
Conference on Robot Learning, 2023.

[27] Z. Xian, N. Gkanatsios, T. Gervet, and K. Fragkiadaki, “Unifying
diffusion models with action detection transformers for multi-task
robotic manipulation,” in 7th Annual Conference on Robot Learning,
2023.

[28] A. Simeonov, A. Goyal, L. Manuelli, L. Yen-Chen, A. Sarmiento,
A. Rodriguez, P. Agrawal, and D. Fox, “Shelving, stacking, hanging:
Relational pose diffusion for multi-modal rearrangement,” arXiv
preprint arXiv:2307.04751, 2023.

[29] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Advances in Neural Information Processing Systems, vol. 33, pp. 6840–
6851, 2020.

[30] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,”
arXiv preprint arXiv:2010.02502, 2020.

[31] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon,
and B. Poole, “Score-based generative modeling through stochastic
differential equations,” arXiv preprint arXiv:2011.13456, 2020.

[32] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning.” http://
pybullet.org, 2016–2021.
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